• News
  • Lake Facts
  • About

Lake Scientist

Research Summary: Ecosystem Niche as a Framework for Lake Management

0
  • by Edgar Lowe and Lawrence Battoe
  • — March 26, 2014

We propose a framework for lake management that accounts for inherent variation in ecosystem state and extends the Hutchinsonian niche concept to the ecosystem level.

Analogous to the n-dimensional species niche, the ecosystem state “niche” is enclosed by the range of variation in primary environmental drivers within which the target ecosystem state can be established and maintained. We applied this concept to Lake Apopka in central Florida using the 3 major drivers of trophic status: concentration of total phosphorus; concentration of chlorophyll a; and transparency, as represented by Secchi disk transparency.

Floral-City-Tsala-Lake-Apopka-Florida

Lake Apopka, February 2007. (Credit: Wikimedia Commons User Ebyabe via Creative Commons)

We delineated 3 volumes or domains: regional, reference, and target domain, which is the ecosystem state niche for the desired condition. The regional domain includes the range of variation in trophic status drivers for the region. The reference domain lies within the regional domain and includes the ranges for trophic status variables for a set of lakes within the region that have conditions approximating the desired condition. The target domain is the ecosystem state niche, encompassed by the ranges of values required for establishment and persistence of the desired condition. The target domain, or ecosystem state niche, considers site-specific aspects such as the lake’s bathymetry, water budget, and natural nutrient loadings. Further, we demonstrate that state diagrams of the temporal trajectory of lake trophic status, plotted over the suite of domains, effectively track progress toward the management goals embodied by the ecosystem state niche.

Full study and references – “The ecosystem niche as a framework for lake management” – published in Lake and Reservoir Management (Volume 29, Issue 4; pages 279 – 284). Abstract reprinted by permission of North American Lake Management Society (http://www.nalms.org).

 

Share

You may also like...

  • NOAA funds research on how phosphorus drives blue-green algal blooms
  • Warmer weather causing algal blooms
  • Imagery from the Copernicus Sentinel-2 satellite over the Baltic Sea. green and blue hues depicting algae blooms swirling around the sea. Research Brief: Evaluating the Efficacy of Targeted Lake Restoration Measures in Lake Groote Melanen
  • Acton Lake a training ground for lake scientists

Leave a Reply Cancel reply

Your email address will not be published. Required fields are marked *

Time limit is exhausted. Please reload CAPTCHA.

BUY AT FONDRIEST.COM
New NexSens XB200 Data Buoy
  • Recent Posts

    • Carbon and Nutrient Monitoring in the Great Lakes Using Satellite ObservationsJune 11, 2025
    • Craig Hill places the Spotter Buoy into Lake Superior near Park Point Beach in Duluth, MN.Research Brief: Evaluating Wave Energy Availability in the Great Lakes and Blue Economy Opportunities June 9, 2025
    • Restoring North Texas Streams to Historical FlowsJune 9, 2025
    • Wind surfing on Lake Michigan.Research Brief: Evaluating ICESat-2 Performance in Wave Height PredictionsJune 2, 2025
    • Research Brief: Monitoring and Predicting CyanoHABs using Sentinel-3 OLCI Satellite ImageryMay 26, 2025
  • Popular Tags

    Great Lakes research summary research research brief pollution Lake Erie Algae invasive species Product Spotlight climate change lake research lake science runoff nutrient-loading Lake Michigan international dissolved oxygen temperature Ohio eutrophication EPA toxic waters ice phosphorus blue-green algae

©2025 Fondriest Environmental Inc. | Questions? Call 888.426.2151 or email customercare@fondriest.com