• News
  • Lake Facts
  • About

Lake Scientist

Research Summary: Dark Carbon Fixation In Lake Sediments

0
  • by Ana Lúcia Santoro, David Bastviken, Cristian Gudasz, Lars Tranvik, Alex Enrich-Prast
  • — June 2, 2016

Abstract

Close to redox boundaries, dark carbon fixation by chemoautotrophic bacteria may be a large contributor to overall carbon fixation. Still, little is known about the relative importance of this process in lake systems, in spite the potentially high chemoautotrophic potential of lake sediments. We compared rates of dark carbon fixation, bacterial production and oxygen consumption in sediments from four Swedish boreal and seven tropical Brazilian lakes. Rates were highly variable and dark carbon fixation amounted up to 80% of the total heterotrophic bacterial production. The results indicate that non-photosynthetic carbon fixation can represent a substantial contribution to bacterial biomass production, especially in sediments with low organic matter content.

Introduction

The incorporation of inorganic carbon into organic matter, i.e. carbon fixation, is one of the essential functions in ecosystems. In addition to photosynthetic incorporation, chemoautotrophic organisms incorporate inorganic carbon to varying extents [1], [2], representing an autochthonous source of organic matter [3]. In deep ocean regions, chemosynthesis, and not the photosynthesis, is admittedly the main reduced carbon source [4], with chemosynthetic bacteria recognized as base of these ecosystems food webs [5]. The importance of chemosynthesis to trophic webs has been also reported to freshwater ecosystems by recent studies, pointing C-1 compounds (especially methane) as important carbon and energy vectors [6], [7].

Chemoautotrophic microbes require the simultaneous presence of oxidized and reduced compounds that will react and liberate energy needed to support inorganic carbon fixation in the absence of light (dark carbon fixation; DCF). Therefore, the most extensive rates of DCF are expected at interfaces between aerobic and anaerobic zones [8]. According to Detmer et al. [9], DCF at a marine pelagic redoxcline can reach up to 30% of the surface primary production. High DCF rates have also been reported at other marine redoxclines [10], [11]. From the 90′s on, chemosynthetic activity has been reported in fresh water ecosystems: Lake Cadagno (Switzerland), Lake Ciso (Spain), Lake Mekkojarvi (Finland), Lake Kinneret (Israel) among others [12]–[15]. In lake water columns, DCF has been reported to contribute from 0.3 to approximately 50% of the total CO2 fixation on a whole lake basis, with contributions >10% primarily in sulfide rich lakes [16].

Sediment-water interfaces of lakes and coastal environments offer sites of intense organic matter deposition and degradation [17], [18]. Biogeochemical activity is high and oxygen can be depleted in the upper few millimeters of the sediments, creating a steep chemical gradient that provides a microenvironment with high chemoautotrophic potential [19]. Processes of ammonium, sulfur and methane oxidation are examples of some redox reactions associated with chemosynthesis in lake sediments [16]. Some chemosynthetic processes can reach rates up to three orders of magnitude higher in the sediment than in the water column [20], and recent studies highlights the idea that chemosynthetic production could represent a paradigm shift in how we view production in fresh water ecosystems [21].

dark carbon fixation

Lake Cadagno in Switzerland. (Credit: Wikimedia Commons User HaLu via Creative Commons 3.0)

Recent literature emphasizes the relative importance of specific sediment chemosynthetic processes as energy sources for the food web [6], [22]–[25], [7]. Some studies suggest that the carbon flux from chemosynthetic activity may be more important in promoting lake food webs than expected. However, the quantitative role of bacterial chemoautotrophic activity and the importance of DCF in relation to sediment C cycling lake sediments are still unknown. The classic sediment-water interface carbon cycling considers the microbial oxidation of organic matter and the incorporation of dissolved organic carbon (DOC) into bacterial biomass via secondary production [26]. If sediment DCF is extensive it may be an important, but currently underestimated, source of biomass carbon to benthic food webs. One way to address the relative importance of DCF is to compare the rates with other metabolic processes in the sediment.

Temperature and organic matter quality and origin are important drivers of sediment bacterial metabolism and biomass [27], [28]. Bacterial metabolism in boreal lake sediments is constrained by low temperatures and by the recalcitrant nature of the dominant organic carbon, resulting in sediments being an effective sink of organic carbon [29]. Yet, tropical lakes, like most other lakes, show frequent CO2 supersaturation [30] and support intense metabolism [31], enhanced by their warm temperatures [32] and the high production of the tropical forests and grasslands in their watersheds [33].

In this study we compared sediment DCF, bacterial production (BP), and oxygen consumption (SOC) rates from boreal lakes in Sweden and tropical lakes in Brazil. We demonstrate that DCF rates can be relatively high and can represent an important contribution to bacterial biomass production, especially in sediments with low organic matter content. Tropical lake sediments have a much higher variability in all measured processes and present lower DCF and higher BP and SOC rates than boreal sediments.

Full study, including methods, results and discussion, published under open-access license in PLOS ONE.

Share

You may also like...

  • Hydrologic technician with the U.S. Geological Survey secures an ADCP to monitor hydrology conditions Research Brief: Impacts of Variable Hydrology and Water Quality on Harmful Algal Blooms in Saskatchewan
  • Research Summary: Challenges Associated With Modelling Outburst Floods From Moraine-Dammed Glacial Lakes
  • Sampling on Lake St. Clair, July 29, 2013. Research Brief: Contaminants in a Great Lakes Urban-Dominant Watershed
  • Drained lake bed at Illisarvik seen from helicopter just before installation of a greenhouse gas monitoring system. Research Brief: How Greenhouse Gas Emissions are Influenced by Stratification and Mixing Events

Leave a Reply Cancel reply

Your email address will not be published. Required fields are marked *

Time limit is exhausted. Please reload CAPTCHA.

BUY AT FONDRIEST.COM
New NexSens XB200 Data Buoy
  • Recent Posts

    • Monitoring New Hampshire’s Aquatic Ecosystems: Continuous Data Collection in the Lamprey River WatershedJune 30, 2025
    • Sign indicating an "idle speed" or "o-wake zone for boaters on the St. Johns River in Astor, Florida, USA.Research Brief: Evaluating the Efficacy of No-Wake Zone PoliciesJune 30, 2025
    • Eddy covariance sensors on top of tripod.Research Brief: Measuring Lake Superior Evaporation with an Eddy Covariance System at Stannard Rock LighthouseJune 23, 2025
    • Wave-Powered Buoy Deployed in Puget SoundJune 23, 2025
    • Long-Term Monitoring in the Chautauqua Lake WatershedJune 18, 2025
  • Popular Tags

    Great Lakes research summary research research brief pollution Lake Erie Algae invasive species Product Spotlight lake research lake science climate change runoff nutrient-loading Lake Michigan dissolved oxygen international temperature Ohio eutrophication EPA toxic waters ice phosphorus blue-green algae

©2025 Fondriest Environmental Inc. | Questions? Call 888.426.2151 or email customercare@fondriest.com